
Middle School Mathematics Teachers’
Knowledge of Students’ Understanding

of Core Algebraic Concepts:
Equal Sign and Variable

Pamela Asquith, Ana C. Stephens, Eric J. Knuth,
and Martha W. Alibali

University of Wisconsin-Madison

This article reports results from a study focused on teachers’ knowledge of students’
understanding of core algebraic concepts. In particular, the study examined middle
school mathematics teachers’ knowledge of students’ understanding of the equal
sign and variable, and students’ success applying their understanding of these con-
cepts. Interview data were collected from 20 middle school teachers regarding their
predictions of student responses to written assessment items focusing on the equal
sign and variable. Teachers’ predictions of students’ understanding of variable
aligned to a large extent with students’ actual responses to corresponding items. In
contrast, teachers’ predictions of students’ understanding of the equal sign did not
correspond with actual student responses. Further, teachers rarely identified miscon-
ceptions about either variable or the equal sign as an obstacle to solving problems
that required application of these concepts. Implications for teacher professional de-
velopment are discussed.

INTRODUCTION

Much research on students’ understanding of algebra has documented difficulties
and misconceptions. Results from the sixth mathematics assessment of the Na-
tional Assessment of Educational Progress (Kenney & Silver, 1997), for example,
indicate that twelfth-grade students have difficulty solving all but the simplest
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algebraic equations and inequalities and have great difficulty translating from ver-
bal to symbolic representations. Kieran (1992) reports that most students do not
acquire any sense of the structural aspects of algebra and, “in order to cover their
lack of understanding…resort to memorizing rules and procedures and…eventu-
ally come to believe that this activity represents the essence of algebra” (p. 390).

In response to students’ inadequate understandings of and preparation in al-
gebra, as well as in recognition of algebra’s role as a gatekeeper to future educa-
tional and employment opportunities (Ladson-Billings, 1998; Moses & Cobb,
2001; National Research Council [NRC], 1998), many in the mathematics edu-
cation community have called for algebra reform (e.g., Kaput, 1998; Olive,
Izsak, & Blanton, 2002). Algebra reform, however, involves more than simply
“fixing” the traditional ninth-grade course. There is an emerging consensus that
algebra reform requires reconceptualizing the nature of algebra in school mathe-
matics and treating the subject as a continuous K–12 strand. “By viewing alge-
bra as a strand in the curriculum from prekindergarten on, teachers can help stu-
dents build a solid foundation of understanding and experience as a preparation
for more sophisticated work in algebra in the middle grades and high school”
(National Council of Teachers of Mathematics [NCTM], 2000, p. 37). The im-
pact of this reconceptualization has been most apparent in elementary school,
where mathematics educators have recently made concerted efforts to integrate
algebraic ideas (e.g., Carpenter, Franke, & Levi, 2003; Carraher, Schliemann,
Brizuela, & Earnest, 2006; Kaput, Carraher, & Blanton, 2007).

The integration of algebra in the elementary grades implies recognition of alge-
braic reasoning as more than mastery of equation manipulation (Carpenter & Levi,
2000; Schifter, 1999) and involves viewing algebra as including new forms of rea-
soning accessible to students across the grades. Introducing algebraic ideas to stu-
dents earlier, however, presents many challenges, including learning more about
the development of students’ early algebraic reasoning, designing supportive cur-
ricula, and developing teacher knowledge and practice that will enable teachers to
foster connections between arithmetic and algebraic forms of reasoning. These
challenges are particularly relevant at the middle school level, at which time the
transition from arithmetic to algebraic thinking is arguably most salient.

Of these challenges, teachers’ knowledge has been identified as an important
determinant of their classroom practices (Borko & Putnam, 1996) and, ultimately,
has major implications for what students learn (Hill, Rowan, & Ball, 2005). Yet, to
date, there has been little research focused on middle school teachers’ knowledge
of algebra as it pertains to integrating algebraic ideas into the middle school curric-
ulum or to the development of students’ algebraic reasoning. Accordingly, the fo-
cus of the research reported in this article is middle school teachers’ knowledge of
students’ algebraic reasoning as revealed by their predictions of student thinking
about two core algebraic concepts—the equal sign and variable.
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TEACHER KNOWLEDGE OF STUDENTS’
MATHEMATICAL THINKING

Early research on teachers’ mathematical knowledge involved counting the num-
ber of mathematics courses completed or degrees earned. Such research failed to
establish a clear relationship between knowledge and student achievement
(Grossman, Wilson, & Shulman, 1989). Since that time, researchers have real-
ized the importance of looking more closely at the substance of teachers’ knowl-
edge, particularly knowledge assumed necessary for teaching (Ball, Lubienski,
& Mewborn, 2001; Ma, 1999). The construct of pedagogical content knowledge,
“which goes beyond knowledge of subject matter per se to the dimension of sub-
ject matter knowledge for teaching” (Shulman, 1986, p. 9) brought attention to
the importance of teachers’ knowledge of students’ understandings, conceptions,
and misconceptions of particular topics in a subject matter. And indeed, such at-
tention to teachers’ knowledge of student thinking is reflected in the work of a
number of scholars (e.g., Ball & Cohen, 1999; Kazemi & Franke, 2004).

The seminal work of Carpenter and colleagues (Carpenter, Fennema, Peterson,
& Carey, 1988; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Franke,
Carpenter, Fennema, Ansell, & Behrend, 1998) with Cognitively Guided
Instruction [CGI] established a strong connection between teachers’ knowledge of
student thinking and students’ achievement in the domain of whole-number arith-
metic. Teachers taking part in professional development focused on research-
based knowledge of student thinking had students who exceeded peers in control
classes in number fact knowledge, problem solving, reported understanding, and
reported confidence in their problem-solving abilities. Similarly, Kazemi and
Franke (2004) introduced CGI principles and terminology to teachers with whom
they worked and also found positive changes in the teachers’ thinking and instruc-
tional practices.

A limitation of much of the research regarding teachers’ knowledge of stu-
dent thinking is that the research has focused primarily on the domains of whole
number and rational number in the early elementary grades. Given the recent
calls for integrating algebraic reasoning throughout the K–8 curriculum, how-
ever, researchers have begun to move toward teachers’ knowledge of student
thinking in the domain of early algebra in elementary school mathematics (e.g.,
Blanton & Kaput, 2003; Carpenter et al., 2003; Kaput et al., 2007; Stephens,
2006). Yet, notwithstanding the importance of this more recent research, fewer
efforts have focused on teachers’ knowledge of student thinking about algebraic
ideas in the middle grades—a period that marks a significant transition from the
concrete, arithmetic reasoning of elementary school mathematics to the increas-
ingly complex, abstract algebraic reasoning required for high school mathemat-
ics and beyond.
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Nathan and Koedinger (2000) have given this topic some attention, investigat-
ing teachers’ beliefs about the relative problem-solving difficulty students would
encounter on a set of tasks that varied in presentation format (words vs. equations)
and placement of the unknown (arithmetic vs. algebraic). They concluded that
teachers hold a “symbol-precedence” view of students’ development in this do-
main, believing that symbolic reasoning precedes verbal reasoning. They argue
such a view is likely due to the influence of traditional textbook organization, in
which “word problems” are presented after comparable symbolic problems. High
school teachers were particularly apt to hold such a view, perhaps due to an “expert
blindspot” resulting from more extensive content training and less appreciation for
the struggles students might experience learning algebra (see Nathan & Petrosino,
2003). Nathan and Koedinger (2000) suggest that tasks such as the ones employed
in these studies be used in professional development and teacher education settings
to confront teachers’ misconceptions about students’ mathematical learning and
development.

Our aim in this article is to build on Nathan and Koedinger’s (2000) work on
teacher knowledge of students’ algebraic thinking by focusing specifically on
two core concepts—the equal sign and variable—with which students have tra-
ditionally struggled, and which are critical to algebra understanding. Results
from the Supporting the Transition from Arithmetic to Algebraic Reasoning
[STAAR] project indicate that middle school students’ understanding of these
core concepts correlates with their success solving algebraic problems, the strat-
egies they use to solve the problems, and the justifications they provide for their
solutions (Alibali, Knuth, Hattikudur, McNeil, & Stephens, this issue; Knuth,
Alibali, Weinberg, McNeil, & Stephens, 2005; Knuth, Stephens, McNeil, &
Alibali, 2006).

As we learn more about middle school students’ algebraic thinking, a logical
next step is to consider what conceptions middle school teachers have about their
students’ thinking in this domain. To this end, our study compared teachers’ pre-
dictions of student thinking on tasks with actual student performance on those
same problems. Our specific research questions were the following:

1. What are middle school teachers’ conceptions of student thinking around
issues of the equal sign and variable?

2. How do these conceptions compare to actual student performance on equal
sign and variable tasks?

Before sharing the results of this study, we will first briefly present an overview of
what is known about student understanding of these two concepts.
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STUDENT UNDERSTANDING OF THE EQUAL SIGN
AND VARIABLE

Numerous studies investigating elementary and middle school students’ concep-
tions of the equal sign have converged on similar conclusions: many students lack
a relational understanding of the equal sign (i.e., the understanding that the equal
sign represents an equivalence relation between two quantities) and instead view it
as signifying the answer or result of an arithmetic operation (e.g., Behr, Erlwanger,
& Nichols, 1980; Kieran, 1981; Falkner, Levi, & Carpenter, 1999; Rittle-Johnson
& Alibali, 1999). A relational view of the equal sign is important when working
with algebraic equations and is necessary for understanding that the trans-
formations performed in solving an equation preserve the equivalence relation
(Alibali et al., this issue; Kieran, 1992; Knuth et al., 2005; Knuth et al., 2006).

Research on student thinking about variable has likewise shown that many stu-
dents’ conceptions are inadequate, particularly with respect to the use of literal
symbols in algebra (e.g., Küchemann, 1978; Usiskin, 1988). Student misunder-
standings include viewing variables as abbreviations or labels rather than as letters
that stand for quantities, assigning values to letters based on their positions in the
alphabet, and otherwise being unable to operate with algebraic letters as varying
quantities rather than specific values (Küchemann, 1978).

METHOD

Participants

An invitation to participate in our study was sent to all middle school mathematics
teachers in a small urban district in the American Midwest (45% minority, 41%
low-income student population), where our student research was conducted. Only
15 teachers who had participated in a professional development course connected
to the STAAR project were not invited. Of the 85 teachers invited, 20 from nine
middle schools agreed to participate. Each was paid $20 for his or her participa-
tion. Prior to the interview, participants were asked to respond to an optional writ-
ten survey addressing their educational backgrounds, prior teaching experience,
curricula use, and professional development activities.

The 20 teachers included 10 sixth-grade, 6 seventh-grade, and 4 eighth-grade
teachers. Four teachers taught only mathematics, while the other 16 also taught
science, social studies, or language arts. Teaching experience ranged from 5 to
31 years with 14 participants having taught 11 years or more. Degrees held were
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primarily bachelor’s degrees in elementary education. One participant held a
master’s degree in math education. Sixteen participants responded to a question
about how recently they had enrolled in a mathematics course. Of these, 7 re-
ported that it had been at least 10 years since their last math course and 9 re-
ported that it had been 20 years or more. At the time of this study, 19 teachers
were using the Connected Mathematics Project (Lappan, Fey, Fitzgerald, Friel,
& Philips, 1998) curriculum and one teacher was using the Mathematics in Con-
text (Romberg et al., 1998) curriculum. All teachers had participated in dis-
trict-led curriculum workshops intended to acquaint teachers with the CMP cur-
riculum. Four teachers had taken professional development classes taught by the
University of Wisconsin-Madison’s mathematics department. These courses fo-
cused on mathematical content but did not address student understanding of al-
gebraic concepts.

Data Collection

After completing the written survey, each teacher participated in an hour-long
videotaped interview framed by a portion of the STAAR project’s longitudinal
written assessment of middle school students’ understandings of various algebraic
concepts. The interviews were conducted between December and February of the
2004–2005 academic year and took place at teachers’ schools. The student data to
be compared with teacher predictions were collected from sixth- through eighth-
grade students attending a middle school (39% minority, 41% low-income student
population) in the same district from which the participants were drawn. Four
tasks—two addressing the concept of equal sign and two addressing the concept of
variable—were selected from this written assessment to form the focus of the
teacher interview (see Figure 1). The written assessment consisted of three forms
with some overlap of items; all 373 students received the equal sign definition and
literal symbol interpretation tasks, 128 students received the equivalent equations
task, and 122 students received the which is larger task.

Teachers were presented each of these four tasks and were asked the following
questions:

1. What answers—correct or incorrect—would you expect your sixth- (or
seventh- or eighth-) grade students to give to this problem and what strate-
gies might they have used to get those answers?

2. What do you believe a student who gives that answer might be thinking?
3. Suppose you gave this problem to 100 sixth- (or seventh- or eighth-) grade

students from across the school district, including a wide range of ability
levels. Could you indicate how many you expect would use each strategy?

4. Could you explain your reasoning behind the assignment of these
numbers?
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The equivalent equations and which is larger tasks were presented prior to the
equal sign definition and literal symbol interpretation tasks to avoid confounding
teacher responses (e.g., teachers may have inferred they should make a connection
between defining the symbol and solving a problem with that same symbol if
asked to define the symbol first). The interviewer recorded all answers—correct
and incorrect—that teachers believed students at their respective grade levels
would give and then asked teachers to identify the strategies and student thinking
behind each of these responses. As teachers were asked to assign percentages to
each response (question 3 above), they were able to review the interviewer’s notes
to verify that an exhaustive and representative list of their responses had been com-
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1. Equal sign definition task
3 + 4 = 7

↑

The arrow above points to a symbol.
What is the name of the symbol?
What does the symbol mean?

2. Equivalent equations task

Is the number that goes in the � the same number in the following
two equations?
2 × � + 15  =  31 2 × � + 15 – 9  =  31 – 9

3. Literal symbol interpretation task

The following question is about this expression:
2n + 3

↑
The arrow above points to a symbol.
What does the symbol stand for?

4. Which is larger task

Can you tell which is larger, 3n or n + 6?
Please explain your answer.

FIGURE 1 Equal sign and variable tasks.



piled. Finally, the interviewer asked teachers to explain their reasoning for the
distribution of student responses and strategies provided.

Data Analysis

Teacher responses to question 1 for each of the four tasks were coded with the
same scheme designed to describe student responses to the corresponding written
assessment items (see Figure 2). Two STAAR project staff members who had prior
experience coding the student data for these items completed the coding. To assess
reliability, a second coder scored 50% of the data. Agreement between coders for
predictions of student strategies was 99% on the equal sign definition task, 85% on
the equivalent equations task, 95% on the literal symbol interpretation task, and
100% on the which is larger task.

For each task, the proportion of student responses of each type predicted by
teachers was averaged across all participants at each grade level, including zeroes
for teachers who did not suggest a particular response. The total of teacher esti-
mates in response to question 3 sometimes exceeded 100% because students might
employ more than one strategy. In such cases, teacher predictions for each student
response were scaled to total 100% so they could be compared to the student re-
sponses. For the equivalent equations and which is larger tasks—which poten-
tially required students to apply their knowledge of the equal sign and vari-
able—interview transcripts were analyzed for teacher identification of mathemati-
cal knowledge necessary for success and potential misconceptions that would hin-
der student performance. Sometimes teachers offered this information spontane-
ously, but they were also prompted to do so by the interviewer when asked to
describe the student thinking underlying each strategy and to provide a rationale
for their predictions (questions 2 and 4 above). All instances of both requisite
knowledge and misconceptions proposed for each task were identified. A second
coder followed the same procedure for 20% of the data. Agreement between cod-
ers was 88% for the equivalent equations task and 86% for the which is larger task.

RESULTS

We first compare teacher predictions of the proportion of students who would offer
a particular response with student performance on the two variable and two equal
sign tasks. We then report the knowledge teachers identified as necessary for stu-
dents to succeed on the equivalent equations and which is larger tasks, as well as
the misconceptions they anticipated would hinder students’ performance on these
tasks.
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Equal sign definition task:
• Operational: Response expresses the idea that the equal sign means “add

the numbers” or “the answer.”
• Relational: Response expresses the idea that the equal sign means “the

same as.”

Equivalent equations task:
• Solve and compare: The two equations are solved using any method and

the solutions compared, or one equation is solved and substitution is used
to see if the solution to the second equation is identical.

• Recognize equivalence: Equivalence of the two equations is recognized
without solving the equations.

• Answer after the equal sign: Response expresses the idea that the solution
to the problem is the value of the right side of the equal sign or the first
number to the right of the equal sign.

Literal symbol interpretation task:
• Multiple values: Response expresses the idea that the symbol can stand

for any number.
• Specific number: Response expresses the idea that the symbol can stand

for one specific number only.
• Object: Response expresses the idea that the symbol is an object or word

beginning with the letter n.
• Unknown digit: Response expresses the idea that the symbol stands for an

unknown number that is a single digit (either 1–9 or 0–9).
• Concatenation: Response expresses the idea that the symbol stands for

the digit in the ones place (so 2n is “twenty something”).

Which is larger task:
• Variable: Response expresses the idea that one cannot determine which

quantity is larger because the variable can take on multiple values.
• Single-value: A single value is tested and a conclusion is drawn on that

basis; thus, a student’s conclusion might vary depending on the value
tested.

• Operation: Response expresses the idea that one type of operation leads to
larger values than the other (e.g., “Three times, because you get a larger
amount with times”).

Global codes used across tasks:
• Don’t know, No response, Other: Responses are identified but do not fit

any of the above categories.

FIGURE 2 Coding scheme for equal sign and variable tasks.



Comparing Teacher Predictions with Student Performance
on the Variable Tasks

Literal Symbol Interpretation Task. Teachers’ predictions of student per-
formance on the literal symbol interpretation task (see Figure 1), in which students
are asked what the symbol n in 2n + 3 stands for, aligned relatively well with actual
student performance across all grades (see Table 1). Most impressive were teacher
predictions regarding the proportion of students at each grade level who would un-
derstand that n could stand for multiple values and the proportion of students who
would lack the requisite knowledge to respond to this question. Eighteen of the 20
teachers were in agreement that at least some percentage of their students would
give a multiple-values interpretation of n (e.g., n can stand for any number) and 13
of the 16 sixth- and seventh-grade teachers were in agreement that some students
would be stumped by this problem, while all 4 eighth-grade teachers agreed that
students would be able to provide a response (see Table 2). Teachers also accu-
rately predicted the proportion of students who would hold misconceptions about
the symbol n (represented by specific number, object, and other in Table 1), al-
though there was some variation in the types of misconceptions evident in student
performance and teacher predictions. Seven teachers believed that students might
think n could only stand for one specific number and six teachers also recognized
that some students might think n stands for a word or an object (see Table 2). For
example, Kevin,* an eighth-grade teacher, stated, “These [students] have no idea
letters and variables are connected so they might think 2n stands for two nickels.”
Two sixth-grade teachers recognized that lacking an understanding of concatena-
tion could result in the misinterpretation of 2n as standing for “twenty something.”
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*All names are pseudonyms.

TABLE 1
Proportion of Student Responses of Each Type and Average Teacher

Prediction of Proportion of Student Responses of Each Type in Response
to the Literal Symbol Interpretation Task

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Interpretation
Multiple value 0.46 0.44 0.63 0.62 0.76 0.81
Specific number 0.02 0.12 0.03 0.14 0.01 0.16
Object 0.04 0.10 0.11 0.02 0.09 0.01
Other 0.19 0.06 0.09 0.10 0.09 0.02
No response/

Don’t know
0.29 0.28 0.14 0.12 0.05 0.00



Which is Larger Task. There were more discrepancies between student
performance and teacher predictions on the which is larger task (see Figure 1)
than on the literal symbol interpretation task. Sixth- and eighth-grade teachers’
predictions matched more closely than seventh-grade teachers’ predictions with
regard to the proportion of students who gave the correct judgment you can’t tell
which is larger (see Table 3). Seventh-grade teachers tended to underestimate
the proportion of students who would respond in that way. However, considering
the proportion of can’t tell responses that were correctly justified by a variable
explanation (see Table 4), seventh-grade teachers’ predictions more accurately
mirrored student understanding. For example, Sandra, a seventh-grade teacher,
stated, “There will be some kids who do know enough in this case who would
say you cannot solve this question because we do not know what n is.” The

TEACHER KNOWLEDGE OF STUDENTS’ MATHEMATICAL THINKING 259

TABLE 2
Number of Teachers Who Predicted Each Student Response by Task

Grade level

Task Response
6th

(n = 10)
7th

(n = 6)
8th

(n = 4)
Total

(n = 20)

Literal symbol
interpretation

Multiple value 9 5 4 18
Specific number 4 1 2 7
Object 3 2 1 6
Other 3 3 1 7
No response/Don’t know 9 4 0 13

Which is
larger-judgment

Can’t tell 9 3 4 16
3n 5 5 2 12
n + 6 6 2 1 9
No response/Don’t know 8 6 2 16

Which is
larger-justification

Variable 9 3 4 16
Operation 6 4 2 12
Single value 3 1 1 5
Other 4 2 0 6
No response/Don’t know 8 5 3 16

Equal sign definition Relational 10 6 4 20
Operational 5 2 1 8
Other 3 1 2 6
No response/Don’t know 1 1 0 2

Equivalent equations Recognize equivalence 3 0 4 7
Solve and compare 9 6 4 19
Answer 0 1 0 1
Other 4 2 0 6
No response/Don’t know 7 3 1 11



sixth- and eighth-grade teachers, on the other hand, underestimated the propor-
tion of students who would hold misconceptions, expecting variable justifica-
tions to accompany correct judgments.

A higher proportion of students incorrectly judged that n + 6 is larger than
teachers predicted, especially at sixth grade where teachers expected more stu-
dents to provide no response (see Table 3). Sixth- and eighth-grade teachers were
relatively accurate in their predictions of the proportion of students who would
think that 3n is larger. However, at seventh grade, teachers predicted that 37% of
seventh-graders would think 3n is larger, while only 5% of students actually did.
Sixth- and seventh-grade teachers predicted that the incorrect judgments, 3n and n
+ 6, would be justified by thinking that multiplication always results in larger num-
bers or that addition of 6 is greater than 3:

[Students] will look at it and think, multiplying I’m going to get a bigger [number]
than when I am adding. (Beth, grade 7 teacher)

Yes, I think [students] would think that n + 6 is bigger because they can see you’re
adding 6 onto whatever number it is. With 3n I don’t think they would be sure if the
number was supposed to be getting bigger or not. (Sarah, grade 6 teacher)

However, although overall, 38% of the sixth- and seventh-graders gave the n + 6
or 3n response, only 4% of their justifications were based on the operation (see Ta-
ble 5). Sixty-seven percent of the 3n responses were not justified or lacked a clear
explanation and 44% of the n + 6 responses were justified by the explanation that 6
is greater than 3 (included in the other category in Table 5), indicating that students
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TABLE 3
Proportion of Student Responses of Each Type and Average Teacher

Prediction of Proportion of Student Responses of Each Type
for the Judgment of Which is Larger

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Judgment
Can’t tell 0.18 0.28 0.54 0.20 0.64 0.76
3n 0.13 0.06 0.05 0.37 0.16 0.06
n + 6 0.41 0.18 0.18 0.03 0.16 0.00
Other 0.00 0.06 0.00 0.12 0.00 0.00
No response/

Don’t know
0.28 0.42 0.23 0.28 0.04 0.18



who had difficulty tended to focus on the numbers present in the task rather than on
the operations.

Students who provided examples to justify their judgment of which is larger
substituted a single value for n or chose multiple values and then compared the two
quantities. This strategy was mentioned by all 20 teachers. An additional strategy
mentioned by five teachers across the grade levels was that students would figure
out the value of n when 3n and n + 6 were equivalent and explain that 3n would be
less than n + 6 when n was less than 3 and larger when n was greater than 3. How-
ever, only one student response across all grades exhibited this more sophisticated
strategy.

In summary, teachers’ predictions of students’ understanding of variable
aligned well with student performance on the literal symbol interpretation task,
with the majority (n = 18) of teachers accurately predicting the proportion of stu-
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TABLE 4
Proportion of Student Responses and Average Teacher Prediction

of Proportion of Correct Judgments Accurately Justified by a Variable
Explanation on the Which is Larger Task

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Justification
Variable 0.08 0.28 0.39 0.34 0.53 0.75

TABLE 5
Proportion of Student Responses of Each Type and Average Teacher

Prediction of Proportion of Student Responses of Each Type
for the Justification of Which is Larger

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Justification
Variable 0.10 0.28 0.52 0.18 0.60 0.74
Operation 0.00 0.19 0.05 0.36 0.09 0.06
Single value 0.03 0.07 0.05 0.12 0.04 0.02
Other 0.42 0.04 0.15 0.11 0.16 0.00
No response/

Don’t know
0.45 0.42 0.23 0.23 0.11 0.18



dents who would interpret a literal symbol to stand for multiple values. Predictions
on the which is larger task, on the other hand, in which students were required to
apply this knowledge, proved less accurate.

We turn next to teachers’ predictions in response to the two equal sign tasks,
which differed substantially from actual student performance. We discuss each
task in turn.

Comparing Teacher Predictions with Student Performance
on the Equal Sign Tasks

Equal Sign Definition Task. Students tend to progress with grade level
from an operational to a relational view of the equal sign (Alibali et al., this issue).
This progression, however, does not occur as quickly as teachers predicted (see Ta-
ble 6). Teachers predicted that students at all grade levels would have a stronger re-
lational understanding of the equal sign than was actually demonstrated by student
responses. Instead, an operational view was more prevalent in the student re-
sponses than teachers predicted. A few teachers assumed that almost all students
would hold a relational view:

I think 100% would get the correct answer in sixth grade. And I guess my reasoning
is that I have not ever had a kid at sixth grade who did not know what this [the equal
sign] meant. (Anne, grade 6 teacher)

Almost 99% [of eighth-grade students] across the district would say [the equal sign
means] the left side equals the right side [of the equation] because they’ve used the
equal sign a lot since kindergarten and have had experience working with equations.
(Kevin, grade 8 teacher)
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TABLE 6
Proportion of Student Responses of Each Type and Average Teacher

Prediction of Proportion of Student Responses of Each Type in Response
to the Equal Sign Definition Task

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Definition
Relational 0.29 0.53 0.37 0.73 0.44 0.62
Operational 0.53 0.34 0.48 0.20 0.43 0.15
Other 0.14 0.10 0.12 0.04 0.11 0.23
No response/

Don’t know
0.04 0.03 0.03 0.03 0.02 0.00



The contrast was most striking at seventh grade, where the average of the six teach-
ers’ predictions were that 73% of students would give a relational definition of the
equal sign, but only 37% actually did (see Tables 2 and 6). Although teachers over-
estimated the proportion of students who would provide a relational definition of
the equal sign, their descriptions of the student thinking underlying the possible
definitions indicated that they understood the distinction between operational and
relational views:

I think more kids would say, “Well, you do 3 + 4 and that gives you 7,” as though it is
an operation. That the addition is causing the 7. They will see it as a causative, not a
balance…. Others would be able to say it means what’s on the left side is equal to
what’s on the right. That is what [the equal sign] really means. (Linda, grade 6
teacher)

Equivalent Equations Task. Student performance and teacher predictions
in response to the equivalent equations task are shown in Table 7. Three of the 10
sixth-grade teachers accurately predicted that a small percentage of students would
recognize the equivalence of the two equations without solving them first. For ex-
ample, Angela, a sixth-grade teacher, stated, “I would guess that 20% might be
able to see the equality by looking at it by seeing that the only thing that changed
on either side of the equal sign was the subtract 9.”

Although 20% of the seventh graders recognized the equivalence, seventh-
grade teachers predicted that none of them would and eighth-grade teachers also
slightly underestimated the proportion of students who would (see Table 7). Nine-
teen teachers across the grade levels predicted a greater percentage of students
would use a solve and compare strategy than actually did. For example, “We would
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TABLE 7
Proportion of Student Responses of Each Type and Average Teacher

Prediction of Proportion of Student Responses of Each Type in Response
to the Equivalent Equations Task

Grade level

6th 7th 8th

Student Teacher Student Teacher Student Teacher

Strategy
Recognize equivalence 0.14 0.09 0.20 0.00 0.31 0.23
Solve and compare 0.40 0.61 0.30 0.75 0.31 0.68
Answer after the equal sign 0.07 0.00 0.13 0.06 0.16 0.00
Other 0.32 0.15 0.27 0.08 0.20 0.00
No response/

Don’t know
0.07 0.15 0.10 0.11 0.02 0.09



have kids who would look at this and they would work out both problems and see if
in fact they got the same answer” (Sophie, grade 8 teacher).

These results seem to contradict teachers’ predictions that more than half of stu-
dents at their respective grade levels would hold a relational view of the equal sign
(see Table 6). In fact, as will be discussed further, teachers did not consider
whether an operational or relational view of the equal sign might shape student
thinking about this task. Other noteworthy observations include some teachers’
failure to provide a correct response to this item (n = 5) or identify the recognize
equivalence strategy (n = 13) as a potential solution (see Table 2).

We turn next to the knowledge teachers identified as necessary for students to
succeed with the which is larger and equivalent equations tasks as well as the mis-
conceptions they anticipated would hinder students’ performance on these tasks.

Teachers’ Identification of Mathematical Knowledge
Relevant to Tasks

Throughout teachers’ discussions of predicted responses to the which is larger and
equivalent equations tasks, they identified mathematical knowledge and miscon-
ceptions concerning variable, equality, and other concepts they believed would be
relevant. All mathematical concepts identified by 25% or more of the participants
(n = 5) will be discussed along with representative interview excerpts.

Which is Larger Task. When teachers described the types of judgments and
justifications students would provide in response to the which is larger task, they
identified mathematical understandings required to compare the expressions 3n
and n + 6 as well as misconceptions they believed might underlie students’ errors.
The most often cited requirement, noted by 18 of the 20 teachers, was that students
would need to understand the notation for implicit multiplication. Others included
the understanding that one should use the same value for n in each expression and
test more than one value (n = 15), knowledge of how to substitute numbers in place
of n (n = 10), knowledge that n stands for a number (n = 6), and the understanding
that letters can represent numerical values (n = 5).

It is noteworthy that teachers more often cited knowledge of notation for im-
plicit multiplication and procedural knowledge about evaluating expressions as
key to student success than students’ deeper understandings about variables. In ad-
dition, only two of the six teachers who identified “knowing that n stands for a
number” as an important concept for this task specified that students would require
a multiple-values interpretation of variable. The most prevalent misconception
mentioned by teachers across the grades was that multiplication always produces
larger results than addition (n = 9).
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You know, I think most kids come out of elementary school not really thinking in
terms of multiplication and what it really does…. They’re more familiar with addi-
tion that you add on so then you get bigger and they don’t really understand…what
multiplication’s doing. (Alice, grade 7 teacher)

I think the overriding thing would be, multiplication is bigger—it’s always bigger. I
heard my elementary teacher say it’s always bigger so…I think it would deceive
them. (Angela, grade 6 teacher)

Five teachers believed that students would base their judgment on only one
value of n. This error was not attributed to the misconception that n can only stand
for one particular number but rather to some students thinking that math problems
have only one answer.

I would have very few kids who would give me more than one example. If they just
happen to choose 3 and look if they are the same, they’ll stop.... I will have some that
will go, “Let’s try 4.… Now I have a difference in my answer….” There will be a few
of those kids but on the whole, once they find one answer, and it supports what they
think, they’ll stop. (Karen, grade 7 teacher)

Only three teachers mentioned students’ lack of understanding about letters as
variables as an obstacle to solving the problem. This is in stark contrast to teachers’
predictions of students’ interpretations of n in 2n + 3 (the literal symbol interpreta-
tion task), in which 12 teachers identified a variety of misconceptions.

Equivalent Equations Task. In predicting student responses to the equiva-
lent equations task (see Figure 1) and justifying these predictions, teachers identi-
fied several mathematical concepts they believed students would need to grasp to
be successful with particular strategies. The most common statement—made by
17 participants—was that students would need to be able to substitute a numerical
value in place of the box and then evaluate the resulting expression. This was not
surprising given the large number of participants (n = 19) who identified solve and
compare as a solution strategy students would use. More specifically, these partici-
pants believed students would use a “guess-and-test” method to solve one or both
equations.

Fourteen participants noted that students would need to be able to use some sort
of symbol manipulation or traditional equation solving technique:

This is what I expect from students: Nine subtract from 31, and you would get 22.
Then, 15 subtract 9 and you get 6. Then 2 times x…plus 6 equals 22. Then…they
would subtract 6 from both sides. They have to do it to both sides, that’s the golden
rule of working with equations. And, 22 reduce 6 they get 16 and 2x equals 16. They
divide both sides by 2 to get the answer. (Kevin, grade 8 teacher)

TEACHER KNOWLEDGE OF STUDENTS’ MATHEMATICAL THINKING 265



The belief that such equation-solving skills would need to be utilized by students
again aligns with participants’ frequent mention of solve and compare as a strategy
students would use.

Other mathematical concepts identified as relevant to success on the equivalent
equations task included an understanding of the “box” notation (n = 9) and knowl-
edge of order of operations (n = 8), despite the fact that multiplication appears be-
fore addition in this task.

Six participants recognized that success on this task might be related to an un-
derstanding of the equal sign as a relational symbol:

I’ve had a number of kids who have said that they see the equal sign as being a ful-
crum and a balance, a scale, a pan scale. (Jill, grade 7 teacher)

We always talk about equations being like a balance. So I need to get this side to bal-
ance with that 22. (Susan, grade 8 teacher)

A somewhat related statement, made by an additional four participants, was
that students would need to recognize that the “minus 9s” on each side of the equa-
tion “cancel out” or “don’t change anything.”

Consistent with the which is larger task, participants rarely identified miscon-
ceptions students might hold that would hinder success on the equivalent equa-
tions task. Specifically, only two participants—both sixth-grade teachers—men-
tioned that students might hold an operational view of the equal sign:

[Students will think] that they are two separate problems that need to be worked out.
Most of my kids believe that the equals sign does something. I don’t think they would
see [the two equations] as a balancing thing. (Linda, grade 6 teacher)

I don’t think sixth-graders have a good sense of equality and that taking away 9 is go-
ing to balance each side of this equation and therefore the number will be the same….
Some of my kids would not understand why it’s 31-9 on the right-hand side of the
equation, because they are very used to seeing one number there. (Angela, grade 6
teacher)

The findings regarding teachers’ predictions of student responses to the vari-
able and equal sign tasks and the mathematics concepts they identified as relevant
to the applied tasks are simultaneously encouraging and discouraging. The overall
results will be discussed below, and implications for teacher professional develop-
ment will be considered.

266 ASQUITH ET AL.



DISCUSSION

The teachers in this study experienced varying degrees of success when asked to
predict how middle school students would respond to tasks addressing their under-
standing of the concepts of variable and the equal sign and applications of these
concepts. With regard to variable, they understood that some middle school stu-
dents view these symbols as objects or believe that they must stand for only one
specific value. When asked to consider the concept of equality, most teachers knew
that some students think of the equal sign as meaning “give the answer.” However,
the extent of this misconception was not accurately anticipated, with teachers pre-
dicting many more students would give a relational definition of the equal sign
than was actually the case.

An understanding of the connections between the given tasks in each category
was also lacking. First, concerning variable, although teachers predicted a large
proportion of students would hold a multiple-values interpretation, they underesti-
mated the proportion of students who would use this understanding to evaluate the
algebraic expression presented in the which is larger task. In fact, few identified it
as a concept key to solving this task, citing instead notation for implicit multiplica-
tion and students’ misconceptions about multiplication as stumbling blocks. Sec-
ond, concerning the equal sign, although teachers predicted a large proportion of
students would hold a relational understanding of this symbol, they underesti-
mated the proportion of students who would use this understanding to recognize
equation equivalence. Furthermore, they did not consider how holding an opera-
tional view of the equal sign might hinder performance.

Prior analyses of student performance suggest a relationship between symbol
understanding and success on related algebraic tasks. Knuth et al. (2005) found
that a multiple-values response to the literal symbol interpretation task was associ-
ated with success on the which is larger task, and that a relational view of the equal
sign was associated with success on the equivalent equations task. Alibali et al.
(this issue) additionally found that the likelihood that a student would use the rec-
ognize equivalence strategy in eighth grade was greater had he or she acquired a re-
lational understanding of the equal sign in sixth or seventh grade, suggesting it
matters when students acquire a relational understanding of the equal sign. That
teachers failed to see these connections is not necessarily surprising, given these
tasks are not ones typically posed to students. This result nevertheless implies a
need for focus in mathematics teacher professional development on the concepts
of variable and the equal sign as well as the role these concepts play in students’
abilities to solve problems.

For example, student data from the two variable tasks might be shared with
teachers to illustrate misconceptions students hold about literal symbols and to
demonstrate that even for students who appear to have a solid understanding of
variable (e.g., by giving a multiple values interpretation of the symbol n), that
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knowledge may prove to be less stable when they are required to apply it (e.g.,
when asked to solve the which is larger task). Sharing research on student thinking
about such items can also point to the importance of the contexts in which vari-
ables are first introduced. If, for example, students’ early experiences with literal
symbols occur primarily in the context of one-step equations in which they are
asked to solve for n, they may have difficulty grasping that in other contexts n can
take on any value—knowledge that is necessary when evaluating an expression.

Teachers should be encouraged to view items such as the equivalent equations
task as opportunities to employ and foster an understanding of the equal sign, and
not simply as an opportunity to practice standard equation-solving techniques.
That only 7 of the 20 teachers mentioned recognize equivalence as a strategy that
students might use to solve this task suggests a lack in teachers’ own understand-
ings of the mathematics involved, as opposed to simply a lack of knowledge about
students’ thinking. Student thinking can nevertheless serve as a vehicle for ad-
dressing such gaps in teacher knowledge. For example, teachers might be asked to
study and discuss STAAR findings on the two equal sign tasks presented here after
first thinking about the tasks for themselves. Such experiences, grounded in dis-
cussions of student work and student thinking, may help develop teachers’ “alge-
bra eyes and ears” (Blanton & Kaput, 2003) so that they become better able to rec-
ognize and capitalize on opportunities to develop students’ algebraic thinking in
the context of everyday mathematics lessons. For example, “equation strings” such
as 5 + 7 = 12 + 5 = 17—often used by students and even teachers as a re-
cord-keeping device—should be recognized both as an inappropriate use of the
equal sign and as an opportunity to discuss the equal sign’s meaning.

Students’ extensive prior school exposure to the equal sign, coupled with the
lack of instructional attention the symbol receives in the teachers’ curricular mate-
rials (documented by McNeil et al., 2006), were likely contributors to teachers’
overestimation of students’ relational understanding. In explaining their rationale
for their predictions, 16 participants stated that given many years of experience
with the equal sign, students must already hold a relational understanding of this
symbol. Recall that Kevin, an eighth-grade teacher, predicted that “almost 99%” of
students would hold a relational view “because they’ve used the equal sign a lot
since kindergarten.” The clear implication for mathematics teacher professional
development is the need to distinguish between exposure and understanding.
Teachers should be encouraged to consider McNeil et al.’s findings that equal
signs presented in “operations on both sides” contexts (e.g., 3 + 4 = 5 + ?) —largely
absent from four popular middle-school mathematics textbooks—are much more
likely to elicit relational understandings than the more common “operations equals
answer” contexts (e.g., 3 + 4 = ?).

Another connection teachers made to students’ prior experiences was attribut-
ing students’ misconceptions about multiplication to elementary school instruc-
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tion. Although teachers overestimated the proportion of students who demon-
strated this misconception when justifying that 3n is larger than n + 6 on the which
is larger task, it nonetheless raises an issue about the important relationship be-
tween operation sense and algebraic thinking. A solid understanding of operations
and number sense is critical to algebraic reasoning. For example, when a student
has had the opportunity in elementary school “to think through what multiplication
does, why 18 × 12 is equivalent to 18 × 10 + 18 × 2 [then when that student] enters
an algebra class, having had such an opportunity…he will understand why (a +
b)(c + d) does not equal ac + bd” (Schifter, 1999, p. 75). Students need practice be-
yond memorizing rules and procedures to develop a deep level of conceptual un-
derstanding. Professional development efforts are needed that focus on connec-
tions between what has been considered the domain of arithmetic (such as learning
about the equal sign and developing number sense) and the algebra learning occur-
ring in middle school.

CONCLUSION

Teachers’ responses to the four tasks presented in this article reveal a great deal
about their knowledge of the development of students’ understandings of two core
algebraic concepts—variable and the equal sign—during the middle school years.
This study highlights the importance of sharing with middle school teachers re-
search-based knowledge about the development of students’ algebraic thinking
and making connections with their early math education. For example, disseminat-
ing STAAR project findings could contribute to teacher knowledge by unveiling
common student misconceptions (e.g., that letters as variables are abbreviations or
objects, or that the equal sign means “the answer”) and lead to a discussion of how
students’ understanding of core algebraic concepts can contribute to the develop-
ment of more sophisticated understanding (e.g., the ability to work with equations
and algebraic expressions).

The role of students’ prior exposure to variables and equal signs along with
the explicit (in the case of variable) or lack of explicit (in the case of the equal
sign) attention these concepts receive in the curriculum may have contributed to
teachers’ accuracy with variable task predictions and lack of accuracy with equal
sign task predictions. Regardless of the source of teachers’ existing knowledge,
however, it would be to teachers’ advantage to know more about student think-
ing in the domain of early algebra. Advancing teachers’ knowledge of student
thinking—specifically with regard to variable and the equal sign—will enable
them to be more attentive to students’ needs and recognize opportunities to fos-
ter understanding.
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